PHYSICS 2DL - SPRING 2010

MODERN PHYSICS LABORATORY

Monday April 19, 2010

Prof. Brian Keating

* UCSD

Homework

- Problems listed on 2DL Spring 2010 -Web Site.
- All HW problems are found in Taylor
- Hand-in HW to TA in Lab

Averaging Data

- Random Errors can be reduced by repeated measurements.
- The best estimate of the true value of a measured quantity is the average (mean).

$$
\bar{x}=\frac{1}{n}_{i=1}^{n}
$$

- We can also estimate the RMS $\left.\sigma_{x}^{2}=\frac{1}{n-1}{ }_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)$
$\underline{\text { error from the set of }}$ measurements.
- We can then compute the error on the mean which decreases with the number of measurements.
$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$

If σ_{x} is 1 mm , how many times must I measure to get a 0.2 mm

Example of Error Propagation

Suppose that $q=x+y+z$. We wish to determine q by measuring x, y, and z. The error on $q,(\delta q)$, can be calculated from the errors on the measured quantities.
$q=x+y+z$
$\delta q=\delta x+\delta y+\delta z$ If δx is an error estimate, we don't know its sign.
$\delta q=|\delta x /+|\delta y|+|\delta z| \quad$ Worst case, if all have same sign.
$\sigma_{q}=\sqrt{(\delta x)^{2}+(\delta y)^{2}+(\delta z)^{2}} \quad$ Independent, random errors.
$\sigma=R M S=$ standard deviation

Another Example of Error Propagation

$$
\begin{array}{ll}
q=x y \quad \begin{array}{l}
\text { Definition (area): assume the correct values are } x, y \text { and } \\
q, \text { but, we measure }(x+\delta x) \text { and }(y+\delta y) . \text { We will then compute } \\
\\
(q+\delta q) \text { from our measurements. }
\end{array}
\end{array}
$$

$$
q+\delta q=(x+\delta x)(y+\delta y)=x y+x \delta y+y \delta x \quad \text { compute }
$$

$\delta q=x \delta y+y \delta x=\frac{\partial q}{\partial v} \delta y+\frac{\partial q}{\partial x} \delta x \quad$ Subtract \boldsymbol{q} from both sides of the above equation and neglect $\delta x \delta y$. Notice partial derivatives.

In estimating the errors, we don't know the sign of δx and δy.
Sometimes the error contributions will cancel, sometimes add.
We can compute errors two ways:
${ }^{\bullet}$ maximum possible error $\quad \delta q=\left|\frac{\partial q}{\partial x} \delta x\right|+\left|\frac{\partial q}{\partial y} \delta y\right|$
-RMS error

Root Mean Square (RMS) Errors

$$
\delta q=\frac{\partial q}{\partial y} \delta y+\frac{\partial q}{\partial x} \delta x
$$

Compute error on $q(x, y)$ from errors one x and y. This assumes you actually know the sign and magnitude of the errors.
Define root mean square error estimate

$$
\begin{array}{cl}
\sigma_{x} \equiv \sqrt{\left\langle\left(x_{\text {meas. }}-x_{\text {true }}\right)^{2}\right\rangle} & \begin{array}{l}
\text { Average over many } \\
\text { measurements. }
\end{array} \\
\sigma_{q}=\sqrt{\left(\frac{\partial q}{\partial x} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y} \sigma_{y}\right.\right.} \quad \begin{array}{l}
\text { Propagation of errors using } \\
\text { the RMS. We will mainlv }
\end{array} \\
\sigma=\left(\begin{array}{l}
\text { use this method. }
\end{array}\right. \\
\begin{array}{ll}
\text { What do we do when the } \\
\text { partial derivative is negative? }
\end{array} &
\end{array}
$$

Why Use Partial Derivatives

1) It worked for the $q=x y$ case.
2) It makes sense graphically.

3) Its really the first order Taylor expansion of a function. $f(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+\left.\frac{\partial f}{\partial x}\right|_{x_{0}, y_{0}, z_{0}}\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{x_{0}, y_{0}, z_{0}}\left(y-y_{0}\right)+\left.\frac{\partial f}{\partial z}\right|_{x_{0}, y_{0}, z_{0}}\left(z-z_{0}\right)+\ldots$

Fractional Errors are Sometimes Useful

For products like $q=x y$, we can add the fractional errors on the measurements to get the fractional error on the result.

$$
\begin{aligned}
& \frac{\sigma_{q}}{q}=\sqrt{{\sqrt{{\frac{\sigma_{x}}{x}}^{2}}+\left({\frac{\sigma_{y}}{y}}^{2}\right.}^{\sigma_{q}=\sqrt{\left(\frac{\partial q}{\partial x} \sigma_{x}\right.}+\left(\frac{\partial q}{\partial y} \sigma_{y}\right.}}
\end{aligned}
$$

Simple Derivation

$$
\frac{\sigma_{q}}{q}=\frac{1}{x y} \sqrt{\left(y \sigma_{x}\right)^{2}+\left(x \sigma_{y}\right)^{2}}=\sqrt{\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}}
$$

This also works for quotients like $q=\frac{x}{y}$

$$
\text { For } V=\frac{4}{3} \pi r^{3} \text {, the fractional error is } \frac{\sigma_{V}}{V}=\frac{1}{V} \frac{\partial V}{\partial r} \sigma_{r}=\frac{4 \pi r^{2}}{\frac{4}{-\pi r^{3}}} \sigma_{r}=3 \frac{\sigma_{r}}{r}
$$

Example of Error Propagation

Find the fractional error on $q(x, y)=\frac{x^{n}}{y}$
$\sigma_{q}=\sqrt{\left(\frac{\partial q}{\partial x} \sigma_{x}{ }^{2}+\left(\frac{\partial q}{\partial y} \sigma_{y}\right.\right.}{ }^{2} \quad$ Our basic formula.
$\frac{\sigma_{q}}{q}=\frac{y}{x^{n}} \sqrt{\left(\frac{n x^{n-1}}{y} \sigma_{x}\right.}{ }^{2}+\left(-{\frac{x^{n}}{y^{2}} \sigma_{y}}^{2}=\sqrt{\left(n{\frac{\sigma_{x}}{x}}^{2}+\left(\frac{\sigma_{y}}{y}\right.\right.}{ }^{2}\right.$

This is the technique you'll need to memorize and use often.

Probability Distributions

- Assume the true value of x is 5.5 m . We make repeated measurements of x with an "error" of 2.5 m .
- What do we expect the distribution of measurements to look like? This depends on the probability distribution.
- This is one possible example.

What is the probability to measure $\boldsymbol{x}=5$?

What is the probability to measure x between 6 and 10 ?

0

Can you think of something with a flat probability distribution? 10

Limiting distribution

Standard Normal (Gaussian) Distribution

- Many probability distributions, including errors, approach the Normal distribution.
- Biological parameters
- Test scores
- Any combination of random variables (Central Limit Theorem).
- Normal distribution has average and standard deviation as parameters.

The Normal Distribution

- X and σ are parameters of the Normal distribution.
- X is the true mean of the distribution.
- The RMS width of the distribution is σ.

What are the units of $P(x)$?

- x is the independent variable.
- \boldsymbol{P} is the probability density to measure \boldsymbol{x}.

$t=1$	Table A. The percentage probability, $\operatorname{Prob}($ within $t \sigma)=\int_{X-t \sigma}^{X+t \sigma} G_{X, \sigma}(x) d x$, as a function of t.						$x-$		X	$X+t o$		
	(t)	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
	40	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17	
	d 1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07	
	${ }^{2}$	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82	
	d. 3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35	
	¢ 4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59	
	d 5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48	
	(6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98	
	¢. 7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05	
	¢ 8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65	
	d9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78	
		68.27)	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43	
	1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60	
	1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29	
	1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55	
	1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38	
	1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82	
	1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90	
	1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65	
	1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12	
	1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34	
	2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34	
	2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15	
	2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80	
	2.3	97.86	97.91	97.97	98.02	98.07	98.12	98.17	98.22	98.27	98.32	
	2.4	98.36	98.40	98.45	98.49	98.53	98.57	98.61	98.65	98.69	98.72	
	2.5	98.76	98.79	98.83	98.86	98.89	98.92	98.95	98.98	99.01	99.04	
	2.6	99.07	99.09	99.12	99.15	99.17	99.20	99.22	99.24	99.26	99.29	5
	2.7	99.31	99.33	99.35	99.37	99.39	99.40	99.42	99.44	99.46	99.47	
	2.8	99.49	99.50	99.52	99.53	99.55	99.56	99.58	99.59	99.60	99.61	

Limiting Distributions; Normal Distribution (Ch.5)

Plan:
-Limiting distributions: physical meaning
-Normal (Gauss) distribution
-Addition in quadrature, SDOM, etc

- Accepted Value of $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}$.sec
- You measure freq $=45 \mathrm{THz}$ with uncertainty:
- $\mathrm{dF}=4.5 \mathrm{THz}$
- What is best estimate for the Uncertainty in Energy $=\mathrm{hF}$?
- $E=3.0 \pm 0.3 \times 10^{-20} \mathrm{~J}$

$\mathrm{W}_{80} \mathrm{~W}-1(\mu \mathrm{~W} / \mathrm{W})$

FIG. 3. The daily average of the latest watt results. The error Fars. are the standard deviation of the mean each day's results.

FIG. 2. Histogram of most recent 989 watt measurements.

Uncertainty source	Value (nW / w)	
Reference transfers (type B)		
$\xrightarrow{\text { Mass }}$ Resistance	20	
Vesistance	${ }_{30}$	
Length	5	
Frequency	5	
Gravity	7	
External effects		
Mass buoyancy	23	
Alignments	40	
Leakage resistance	20	
Magnetic fux z-profile fit	20	
Knife-edge hysteresis RF noise offsets	20 10	
RSS subtotal	82	39
Statistical type A	30 87	

Fitting Voltage Data to $\mathrm{V}=\mathrm{IR}$

$$
\begin{aligned}
& \frac{\partial \chi^{2}}{\partial R}=0 \\
& \text { IMPLIES : } \\
& R=\frac{\sum_{i}^{N} I_{i} V_{i}}{\sum_{i}^{N} I^{2}{ }_{i}}
\end{aligned}
$$

$\mathrm{N}=$ number of data points. In this
example, $N=4$

What is the Error on the Best-Fit Parameter R?
Our general formula, which always applies, is:

$$
\sigma_{R}=\sqrt{\left(\frac{\partial R}{\partial V_{1}}\right)^{2} \sigma_{\eta_{1}}^{2}+\left(\frac{\partial R}{\partial V_{2}}\right)^{2} \sigma_{v_{2}}^{2}+\ldots\left(\frac{\partial R}{\partial V_{N}}\right)^{2} \sigma_{v_{N}}^{2}}
$$

Since: $\quad\left(\frac{\partial R}{\partial V_{1}}\right)^{2}=I_{1}^{2},\left(\frac{\partial R}{\partial V_{N}}\right)^{2}=I_{N}^{2}$

$$
\text { and }: \sigma_{V_{V}}=1 \mathrm{mV}
$$

